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To understand reaction kinetics in capillaries, pores, and tubules, we performed Monte Carlo simulations of
random walk based exploration volumes and bimolecular A+ A and A+ B reactions on baguette-like lattices.
The emphasis is on the scaling of the dimensional crossover times with tube width. We find that the exponents
range between 1 and 4, i.e., that the global information propagates either slower or faster than single-particle
diffusion, depending on the reaction type (e.g. A+ A or A + B ) and on the dimensionality (2 or 3). The
time evolutions of the A+ A reactions approximately mimic those of the average exploration volumes,
within the simulation uncertainties. All asymptotic time behaviors exhibit truely one-dimensional character,
i.e., extremely nonclassical kinetics. Rapid and complete A, B reactant segregation is illustrated. The
nonuniversal scaling powers present a new theoretical and experimental challenge.

1. Introduction

Due to the general absence of convection inside tubules,
pores, and capillaries, the observable rate laws for elementary
chemical reactions that may occur within such quasi-one-
dimensional structures are expected to exhibit nonclassical
diffusion-controlled reaction kinetics. Nonclassical reaction
kinetics with one-dimensional rate-law characteristics have been
clearly demonstrated experimentally for several systems,1-3

including bimolecular reactions in solution-filled pores4,5 and
binary exciton annihilation in crystalline media embedded inside
pores,6-8 as well as for exciton annihilation on isolated guest
chains9 in polymer blends. While the dynamics of diffusion-
controlled photochemical and photophysical processes indicated
a fractal-like network structure in some of these systems, most
of the systems studied, including the well-characterized nucle-
pore membranes,2 revealed cylindrical pore structures. These
cylindrical systems exhibited crossover times dependent on
width or, alternatively, crossover widths for given experimental
time scales.
The nonclassical, anomalous behavior of the A+ A elemen-

tary reaction1-14 has been shown3,8-12 to be caused by the
anomalously large and continuously growing kinetic depletion
zones, i.e., fluctuating mesoscopic domains, where the reactants
have been depleted. Even more dramatic nonclassical effects
have been demonstrated for elementary A+ B reactions3,15-18

where kinetic self-segregation between A and B, the Ovchin-
nikov-Zeldovich effect,15 has been demonstrated for an initially
random system, as well as for steady state conditions.19,20 This
purely kinetic self-segregation of reactants in an elementary
reaction has not yet been observed experimentally. Only the
related Racz21 effectsthe preservation of the segregation front
for A + B reactions with initially separated reactants, has been
observed in laboratory experiments on reactions in capillar-
ies.22,23 The Ovchinnikov-Zeldovich rate law deviates from
classical kinetics only slightly in three dimensions, more in two,

and most prominently in one dimension. In addition, the
Ovchinnikov-Zeldovich effect is “wiped out” by convection
or reversibility. Convection is difficult to avoid in three dimen-
sions; the degree of convection sufficient to thwart the Ovchin-
nikov-Zeldovich effect is highest in three dimensions and
lowest in one dimension; i.e., this effect is most “fragile” in
three dimensions. Therefore, one-dimensional experimental
realizations should yield the clearest results. While strictly one-
dimensional reaction systems are hard to come by experimen-
tally, it is much easier to find or to construct systems that are
effectively one-dimensionalscapillaries, pores, or tubules, for
example. Such systems are, or can be made to be, immune to
convection currents, and only a large degree of reaction
reversibility can frustrate the Ovchinnikov-Zeldovich effect.25
To encourage such experiments, we performed simulations of
such tubular systems, using “baguette-like” lattices, with the
aim of quantifying the conditions necessary for the observation
of the Ovchinnikov-Zeldovich effect. Since in the short time
regime (before the Ovchinnikov-Zeldovich effect is reached)
the A+ B reaction mimicks the behavior of the A+ A reaction,
we have also simulated the A+ A case. Also, as the A+ A
reaction generally follows the scaling of the average exploration
volume of a random walker,18,24 we also simulated this case.
For completeness, we have simulated two-dimensional “flat”
tube reactions to compare with the three-dimensional tube
results.
We note that classical reaction kinetics is dimension inde-

pendent; therefore, its reaction orders and the time exponents
describing the densities (survival probabilities) or reaction
progress are dimension independent (see below). Thus, there
are no time crossovers of the scaling laws. On the other hand,
the dimensional sensitivity of nonclassical kinetics implies
crossover times that depend on tube diameter. Previous
work16,25-27 has effectively used scaling arguments based on
the mean square displacement law (Einstein diffusion) to
describe the time dependence of diffusion-controlled reaction
kinetics. The latter law has also been found18,27 to describe
correctly the crossover times for the onset of finite size effects
in regular lattices (1, 2, and 3-D). Is this law also relevant to
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the crossover times due to the finite width of the tube? To
answer this question and to help interpret existing experiments
and to guide new ones, Monte Carlo simulations were performed
for elementary A+ A and A+ B irreversible reactions and for
the average exploration volume, in two- and three-dimensional
baguette-like lattices. Seen in Figure 1 are data representing
each of the three processes which we discuss in this paper: the
number of distinct sites visited,SN, the elementary reaction
process A+ A f 0, and the elementary reaction process A+
B f 0. The latter two are both measured in terms of the
reaction progress,〈F(t)〉-1 - F0-1, whereF0 is the initial A
particle density. In Figure 1 the solid line fits to the A+ A
data give an example of how we determined the crossover time,
tc, between the early time and asypmtotic time behavior.
We find that the crossover times,tc, do scale with lattice

width, but with unexpected powers. The exponents range
between 1 and 4; i.e., the global information propagates either
slower or faster than single-particle diffusion, depending on the
reaction type (e.g., A+ A or A + B) and on the dimensionality
(2 or 3). At times well beyond the crossover time, the number
of distinct sites visited,SN, and both the A+ A and the A+ B
reactions display the characteristic, asymptotic, nonclassical
behavior of a one-dimensional system. Kinetic depletion zones
develop for both reactions and spatial segregation of reactants
occurs for the A+ B reaction. Well before the crossover time
some nonclassical behavior is observed as well, even for the
effectively three-dimensional systems. No truely classical
kinetic time regime is found for narrow tubes, irrespective of
their length.

2. Method of Simulation

Monte Carlo computer simulations are often used to model
random processes such as diffusion,27-32 using a random number
generator to simulate the random walk of a particle(s) on a lattice
structure. The lattices on which we investigate the behavior of
the number of distinct sites visited in time,SN, the A+ A f 0
reaction process and the A+ B f 0 reaction process, are highly
anisotropicsthey have different linear sizes in thex and y,
compared to thez, dimensions. Typically, for the 2-D casex
is small, varying fromx ) 3 to 50, whiley is long, typically
105-106 sites. For particle diffusion in thex dimension, we
used reflective boundary conditions, which means that the

particles are reflected if they reach the ends of the lattice in the
x dimension. In they (long) dimension we use cyclic boundary
conditions, which means that if the particles reach the ends of
the lattice in they dimension, they continue their motion at the
other end of the lattice. For the 3-dimensional, baguette-like
lattices, usuallyx andy are small (andx ) y), with reflective
boundary conditions, whilez is the long dimension, with cyclic
boundary conditions. The actual sizes used for the long
dimension are such that, in the calculation ofSN, a particle starts
in the middle of the lattice and the boundaries in the long
dimension are never reached. The different boundary conditions
used in the various dimensions add to the anisotropic character
of the particle motion.
In the course of reflection at the walls along the short

dimension(s), one can choose from two different approaches
for the calculation of time, a situation that frequently appears
in similar problems. A reflection at the boundary may or may
not consume one time unit (one Monte Carlo step), leading to
the so-called blind and myopic ant models, respectively. From
past experience,30,31 these models usually give similar answers
for the exponents of the scaling laws, even though the absolute
values of the monitored parametrs are different. We used both
models in the present study. Most calculations were performed
with the blind ant model, but several cases were checked with
the myopic ant model as well. The scaling results are the same.
Our computer simulations for diffusion-limited chemical

reactions are performed according to the following algorithm.
A population of reacting particles is initially placed on a lattice
by randomly choosing the coordinates for each particle.
Particles move by diffusion on the lattice, which is modeled by
independent random walks of the individual particles, one at a
time. The coordinates of all particles are monitored as a function
of time. Steps are allowed to nearest-neighbor sites only. There
is no interparticle interaction. Reaction occurs, for the A+ A
type reaction, if two A particles “collide”, i.e., two A’s attempt
to occupy the same lattice site. Every collision leads to a
reaction with a probability of one, and excluded volume
conditions are maintained. When two particles react in this
fashion, they are removed from the system (they are annihilated).
Time is advanced one unit after all particles still present on the
lattice have attempted to move once.
For the A+ B type reaction, reaction occus when an A and

a B particle collide. No reaction occurs if twoA particles (or
two B particles) collide. If an A(B) particle attempts to land
on a site already occupied by another A(B) particle, the particle
does not move in that time step (excluded volume condition).
Every collision of anA particle with aB particle leads to a
reaction with a probability of one, and both particles are removed
from the system (annihilated).
In this study we only treat “batch reactions”, i.e., the case

where all reactants are generated at time zero, before any
reaction has occurred, and thus the particle density decreases
as a function of time. The width and height of the three-
dimensional lattices are chosen to be equal so that the two- and
three-dimensional cases can be more easily compared.

3. Results and Discussion

It has been shown3,10,32,33 that diffusion-limited reaction
processes are intimately related to the behavior of the average
number of distinct sites visited by a single random walker,SN,
as a function of time (N ) time). Thus, to better understand
the behavior of diffusion-limited elementary reaction processes
on spatially anisotropic lattices, we first studied the behavior
of SN on such lattices, using Monte Carlo simulation techniques
to model a single random walk on spatially anisotropic
(baguette-like) lattice structures.

Figure 1. Representative data plots for three processes:SN, the average
number of distinct sites visited (200 runs averaged), and the reaction
progress of both A+ A f 0 (25 runs averaged) and A+ B f 0 (7
runs averaged), as measured by〈F(t)〉-1 - F0-1, vs time, all occurring
on a spatially anisotropic, “baguette-like” lattice of size 3× 3 × 105.
The initial density,F0, is 0.8 particle/site for the A+ A simulations
and 0.4 in each species for the A+ B process. The crossover time,tc,
from 3-D behavior at early times to 1-D behavior at asymptotic times
is found from the intersection of the two solid lines, which are drawn
as best straight line fits to the data at early and asymptotic times.

Kinetics of Dimensional Crossovers J. Phys. Chem. A, Vol. 101, No. 5, 1997803



The analytical expression forSN in the asymptotic limit ofN
f ∞, whereN is the number of steps, has been given by
Montroll and Weiss34 for all three dimensionalities. In 1-D,
SN follows a t1/2 power law, in 3-D it is linear witht, and in
2-D it is “almost” linear, with an additional logarithmic term:

These are the asymptotic equations. Correction terms, which
add accuracy to the early time behavior, have also been derived.
We use the analytical expressions 2 and 3, with their associated
correction terms34,35

whereA andB in eq 5 are constants. We implement eqs 5 and
6 to compare the behavior ofSN on isotropic lattices to that
observed on our anisotropic, baguette-like lattices at early times.
We also use eqs 1, 5, and 6 to determine the crossover time,tc,
of SN from 3-D or 2-D behavior, into 1-D behavior, as discussed
below.
The number of distinct sites visited,SN, as a function of time,

for a single random walker on baguette-like lattices withW×
L orW× W× L sites, whereW , L, is plotted in Figures 2

and 3, respectively, for 2- and 3-D. We do observe a crossover
in SN from 2- or 3-D behavior (depending on the embedding
space), at early times, to a 1-D behavior asymptotically. The
early time behavior ofSN on these baguette-like lattices indeed
follows that found in 2(or 3)-D, as can be seen by its adherence
at early times to the respective analytical formulae, eqs 5 and
6, while its long time behavior shows the characteristic 1-D
slope of 0.5 on a log-log plot, as expected from eq 1.
The single random walker simulations were done on baguette-

like lattices with ample lengths, such that site revisitations,
due to finite size effects, did not occur in the length direc-
tion. The single random walker might be expected to experience
the short boundaries (i.e., the width), and thus the 1-D character
of the lattice, in a time that scales astc ∼ W2, following the
mean square displacement law. To test this hypothesis, or any
other scaling law, we derived the crossover times from high
(2-, 3-) to low (1-) dimensional behavior as a function of lattice
width.
In the method which we employ to findtc for theSN curves,

we use the analytical expression of eq 5 or 6, respectively, as
the early time fit to the 2- or 3-D data and a line with a slope
) 0.5 to fit the asymptotic data. The time axis value
corresponding to the intersection of these two fits to the data is
defined astc (see Figures 2 and 3). The other method, which
we employ to determine the crossover time,tc, for the A+ A
f 0 and A+ B f 0 processes, involves drawing “best” linear
fits to both the early time and the asymptotic time portions of
the curve. Again, the corresponding time axis value where these
two straight lines intersect is defined astc (see Figure 1). Both
of these methods are used to determine crossover times for the
A + A f 0 process (since the behavior of the A+ A process
maps that ofSN, one can utilize the analytical expressions for
the behavior ofSN in 2- or 3-D to fit the early time A+ A
behavior as well). While the absolute values fortc obtained
from these two methods are different, the resulting scaling
relation betweentc andW is the same for a given process, within
the associated error.
Figures 4 and 5 show the time evolution of the reaction

progress,〈F(t)〉-1 - F0-1, for the A+ A f 0 process on 2-D
and 3-D baguette-like lattices, respectively. The A+ A f 0
reaction progress, measured by〈F(t)〉-1 - F0-1, has been found
before3,14,18 to map, in time, the number of distinct sites

Figure 2. Number of distinct sites visited,SN, on spatially anisotropic
2-D lattices, plotted as a function of time. Simulations were done on 3
× 106, 5× 106, 10× 106, 20× 106, and 30× 106 site lattices (bottom
to top lines, respectively). The analytical formula of Henyey and
Seshadri (eq 5) forSN in 2-D and a line with slope 0.5 are plotted, as
solid lines, to illustrate how the crossover time,tc, was measured.

Figure 3. Number of distinct sites visited,SN, on spatially anisotropic
3-D lattices, plotted as a function of time, for 3× 3 × 105, 5 × 5 ×
105, 10× 10× 105, 20× 20× 7500, and 30× 30× 5000 site lattices,
shown by dotted and/or dashed lines (bottom to top, respectively). The
analytical formula of Montroll and Weiss (eq 6) forSN in 3-D and a
line with a slope of 0.5 are plotted, as solid lines, to illustrate how the
crossover time,tc, was measured.

SN∼ (8Nπ )1/2 Nf ∞ 1-D (1)

SN∼ πN
log(N)

N f ∞ 2-D (2)

SN∼ N N f ∞ 3-D (3)

1-D:

SN ) (8Nπ )1/2{1+ 1
4N

- 3

64N2
+ ...} (4)

2-D:

SN )
AN

ln(BN)
∑
j)0

∞ -δâ
j

ln BN
|â)2[1+ O(1N)] (5)

3-D:

SN ) 0.65946267N+ 0.573921N1/2 +

0.449530+ 0.40732N-1/2 + ... (6)
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visited on spatially isotropic lattices, in both Euclidean and
fractal dimensions. Comparing Figures 4 and 5 with Figures 2
and 3, we find that this mapping persists on spatially anisotropic
lattices. The inset in Figure 5 shows this correspondence of
the progress of the A+ A f 0 reaction withSN, since the plots
of 〈F(t)〉-1 - F0-1 for the A + A f 0 reaction vsSN, on 3×
3 × 105 and 50× 50 × 1000 site baguette-like lattices, do
result in lines with slopes of approximately 1. (While, for low
initial densities, the very early time behavior of the A+ A f
0 reaction is classical and then crosses over to the anomalous
A + A behavior (resulting from the buildup of depletion zones
around A particles8), we do not really see this in our high initial
density simulations.) ForF0 ) 0.8 particle/site, the initial
density used in all of the A+ A simulations, the crossover to
the so-called A+ A regime27 certainly occurs within the first
few time steps, as has been found before for isotropic lattices
with high initial densities. For all lattice sizes examined, the
density plots of the behavior in both the 2-D and 3-D systems
show an asymptotic slope of 0.5, i.e., a crossover to the 1-D
behavior.

The reaction rate of the A+ B f 0 process occuring on
baguette-like 2- and 3-D lattices was followed by measuring
〈F(t)〉-1 - F0-1 vs time, and the results are plotted in Figures 6
and 7. All simulations were run with the intial conditionF0 )
FA ) FB. From these plots we observe a crossover of the
reaction process, from a behavior characteristic of 2- or 3-D, to
the asymptotic behavior that is expected if the binary A+ B
f 0 reaction process occurs in a truely 1-D space. Specifically,
we find the expected15,16,26asymptotic 1-D slope of 0.25 on a
log-log plot. For the A+ B f 0 reaction, the time dependent
behavior of the reaction progress,〈F(t)〉-1 - F0-1, does not map
onto that ofSN, in contrast to the A+ A f 0 reaction progress,
except possibly at very early times.
In Figure 8,〈F(t)〉-1 - F0-1 vs time is plotted for the A+ B

f 0 reaction occuring on baguette-like lattices of sizes 3× 3
× 105, 3× 3× 12 000, and 3× 3× 12 000 for three different
initial densities:F0 ) 0.1, 0.2, and 0.4 particle/site, respectively.
The inset in Figure 8 is a plot of the crossover time,tc, vsW
for the same three initial concentrations. The solid line in the
inset plot has a slope of 1.4, the average of the three least-
squares fits found for the scaling relation betweentc andW, for
the three initial densities. It appears, from these results, that
the scaling of the crossover time with the width of the lattice is
independent of concentration (inset), while the actual crossover
time is not, as can be seen in Figure 8, where higher initial

Figure 4. Reaction progress,〈F(t)〉-1 - F0-1, vs time, plotted for the
A + A f 0 reaction occuring on spatially anisotropic 2-D lattices of
the same sizes as those decribed in the caption of Figure 2. The ini-
tial A particle density was 0.8 particle/site in all cases. Note the
slope) 0.5 line and that the long time data show some finite length
effects.

Figure 5. Reaction progress,〈F(t)〉-1 - F0-1, vs time, plotted for the
A + A f 0 reaction occuring on spatially anisotropic 3-D lattices of
the same sizes as those decribed in the caption of Figure 3. The initial
A particle density was 0.8 particle/site in all cases. Note the slope)
0.5 line and that the long time data exhibit some finite length effects.
The inset figure shows the linear correspondence between the behavior
of SN and the A+ A f 0 reaction on spatially anisotropic lattices of
size 3× 3× 105 and 50× 50× 103 over almost all (except very early
and very late) times.

Figure 6. Reaction progress,〈F(t)〉-1 - F0-1, vs time, plotted for the
A + B f 0 reaction occuring on spatially anisotropic 2-D lattices of
the same sizes as those decribed in the caption of Figure 2. In all cases,
the initial A and B particle densities were 0.4 particle/site for each
species. Note the slope) 0.25 line.

Figure 7. Reaction progress,〈F(t)〉-1 - F0-1, vs time, plotted for the
A + B f 0 reaction occuring on spatially anisotropic 3-D lattices of
the same sizes as those decribed in the caption of Figure 3. In all cases,
the initial A and B particle densities were 0.4 particle/site for each
species. Note the slope) 0.25 line.
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densities exhibit a crossover to 1-D behavior more quickly than
lower initial densities.
In Figure 9, we plot vsW the ratioFc/F0, which is the density

of A particles remaining on the lattice attc, normalized byF0,
read from the data shown in Figures 6 and 7 for the A+ B
process occurring in 2- and 3-D, respectively. We note that, in
general,F(t)/F0 is the “survival probability”, at timet, of the
original particles. For comparison we plot another survival
probability,Fc′/F0, namely, the normalized densities att ) tc′,
wheretc′ is the crossover time to the segregated (Ovchinnikov-
Zeldovich) time regime in isotropic, linear, square, and cubic
lattices found in earlier work,18,27where this ratio was calledfd
(d ) 1, 2, 3). These values are, of course, unrelated to the
“baguette” width,W, in our baguette-like lattices and are
represented in Figure 9 by horizontal,W independent lines, for
d ) 1, 2, and 3. From this plot one can observe that, forWe
10, the density ratios,Fc/F0, at the times of the dimensional
crossovers (tc) in the 2- and 3-D baguette-like lattices, occur
well above the density ratios needed for crossover into the
Ovchinnikov-Zeldovich regime, given byfd ) Fc′/F0, whered

is the dimension of the isotropic lattice,27 i.e., tc < tc′ for “thin
baguettes”. This implies that aggregates of like particles begin
to form within the first few time steps on our narrow baguette-
like lattices. This can be seen visually in our simulation movie
snapshots of the A and B particles “diffusing” and “reacting”
on 2-D “tube” lattices (see Figure 10). This aggregation seems
to result in a slowing down of the reaction process and the
deviation from the A+ A type behavior (see Figure 1) in these
baguettes, in contrast to the behavior observed for the A+ B
reaction, at early times, on isotropic lattices.18,27

In Figure 11, the crossover times,tc, for SN and for the
reaction progress of the A+ A f 0 and A+ B f 0 reactions
are plotted as a function of tube width,W, revealing the existence
of scaling relations between these two parameters. The complex
pattern of these scaling relations is possibly the most interesting
behavior exhibited in these two- and three-dimensional tubelike
lattices. We write this scaling relation in the form

wherex is the crossover time scaling exponent. Table 1 lists
these exponents. We see a dependence on both the dimension-
ality of the problem and the specific nature of the reaction. (Note
that SN represents directly some trapping reactions32,33). As
mentioned previously, the absolute value oftc for a given process
on a certain lattice size can vary, depending on the method im-
plemented for its determination. However, if each method is
utilized in a self-consistent manner, the resulting scaling relations
agree with each other, within the associated error (Table 1).
On the basis of an analogy to the finite size effect crossovers

found for isotropic lattices,18,27 one might have expected a
universal crossover power of 2 in eq 7, i.e.,x ) 2 or tc ∼ W2,
in analogy to the Einstein mean square displacement diffusion
law. Indeed, current arguments concerning both depletion zone
growth in time (for trapping and A+ A reactions) and aggregate
size growth in time (for A+ B reactions) are usually based on
this mean square scaling law.16,25-27,36 Furthermore, we note
that in classical kinetics there is no dependence of any
elementary reaction progress on dimensionality.37 The reaction
progress, measured by〈F(t)〉-1 - F0-1, is simply linear in time
at all times, and thus no crossover time can be defined (in a
scaling sense).
In contrast to the above expectations, we see from Table 1

that even the simplest case,SN, does not scale as the mean square
displacement law (x) 2) but rather exhibits anomalous scalings
on these 2- and 3-D spatially anisotropic lattices. Within the
associated errors, the crossover times of the A+ A f 0 reaction
process follow (at least roughly) those ofSN. The A+ A data
are found only over a relatively narrow range of widths because
the A + A reaction process occurs quickly in these baguette-
like lattices and finite size effects set in (particle concentrations
become too dilute) before the dimensional crossover can be
reached for lattices withW> 20 in 2-D and for lattices withW
g 10 in 3-D, approximately. We emphasize that the powers
of SN and of the 3-D A+ A reaction are significantly larger
than 2. This means that the information propagates slower than
single-particle diffusion. Specifically, the start of the 1-D
behavior requires the average particle to hit the tube wall
repeatedly. On the other hand, the crossover powers for the A
+ B f 0 process are significantly smaller than two in both
2-D and 3-D baguette-like lattices. This result is surprising
because it means that the information propagates faster than
single-particle diffusion. Specifically, the start of the 1-D
behavior does not require the average particle to hit the wall
even once. The scaling oftc withWappears to be universal on
the length scales we studiedsfor both the smallW lattices, where

Figure 8. Reaction progress,〈F(t)〉-1 - F0-1, vs time, plotted for three
different initial densities of the A and B particles participating in the
A + B f 0 reaction occuring on a 3× 3× 105 site spatially anisotropic
3-D lattice. The inset figure shows thetc dependence on width for the
three densities: (O) F0 ) 0.1, (]) F0 ) 0.2, and (0) F0 ) 0.4 particle/
site, plotted in the main figure. The line plotted is an average of the
least-squares fits to the three scaling curves and has a slope of 1.4.

Figure 9. Density of particles remaining on the baguette-like lattice
at the dimensional crossover time normalized by the initial particle
density,Fc/F0, as a function of lattice width,W. For comparison, the
horizontal lines represent the normalized density of particles,fd,
remaining on a regular, isotropic lattice at the crossover to the
Ovchinnikov-Zeldovich regime. The values offd, where d is the
dimension 1, 2, or 3, are taken from refs 18 and 27.

tc∼Wx (7)
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Fc/F0 > fd, and the largeW lattices, whereFc/F0 < fd. We note
that, while the precision of the scaling exponents is very high,
the accuracy of these values (listed in Table 1) is less certain.
Still, all but one of the values of these scaling exponents are
well away from 2, presenting an unexpected result, with
interesting theoretical and experimental implications.

4. Conclusions

Asymptotically, in the absence of finite size effects, all of
the processes we have studied on the spatially anisotropic,

tubular lattices do exhibit 1-D behavior. Had the diffusion
process behaved classically in these baguette-like lattices, the
power law relation between the reaction processes and time
would have remained the same over all times, and there would
have been no crossover between scaling laws. Instead, we
observe a crossover in the temporal power law of these
processes, and the time at which the crossover occurs does scale
with lattice width. This scaling exhibits unusual exponents
(different from 2), indicating that, depending on the process
and the dimension of the embedding space, the information of
the existence of a finite tube width propagates either faster or
slower than expected for a purely diffusional mass transport
process. The unexpected results discussed here present both a
theoretical challenge and experimentally measurable phenomena.
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